

1st quarter 2015, No. 92

Evaluation of the Soleris method for sterility testing of UHT milk	1-4
Standards, draft standards, New EU regulations	5-8
Afnor Validations	9
Forthcoming events	10
In the press – On the web	10
Bibliographic references with table of contents, keywords	annexed

ACTALIA Cecalait

Rue de Versailles - B.P. 70129 39801 POLIGNY CEDEX FRANCE www.cecalait.fr www.actilia.eu

EVALUATION OF THE SOLERIS METHOD FOR STERILITY TESTING OF UHT MILK

The resazurin test is routinely used to verify UHT milk sterility in many industrial laboratories. After preincubation of the milk for 2 to 5 days at 30 °C, this test reveals the bacterial reductase activity. The official method (European directive 92/46) is a total plate count following sample incubation for 15 days at 30 °C, which therefore cannot be routinely used. The Soleris method, which detects microbial growth after a preincubation of UHT milk for 2 to 3 days at 30 °C, could allow quicker release of negative batches. In this study, we evaluated the Soleris method in parallel with the resazurin test and the official method.

Neogen, founded in the USA in 1982, has grown internationally, with its European headquarters located in Scotland. Neogen develops and markets products dedicated to food and animal safety. The company's Food Safety Division markets dehydrated culture media, and diagnostic test kits to detect foodborne bacteria, natural toxins, genetic modifications, food allergens, drug residues, plant diseases and sanitation concerns. These kits focus on topical concerns about the quality and safety of food and agricultural products, from the quality of seed that goes into the ground, right through the chain to the safety of fully processed food products.

Soleris is a rapid system for the accurate detection and enumeration of a variety of microorganisms across a spectrum of sample types – including food and beverages. Its operating principle is as follows:

A vial with a specific microbial growth medium for respective microorganisms or products is inoculated and placed in an incubator connected to an automated reader system. Optical sensors continuously monitor the microbial growth in the vial. The growth curve obtained can be visualised and edited. A maximum of 512 samples can be tested simultaneously, using four instruments connected to a single computer.

For UHT testing in dairy products the "NF UHT medium" vial containing a trypticase soy agar is used. This medium is inoculated with UHT milk that has undergone pre-incubation at 30 °C, and then placed into the instrument set at 30 °C. The vial's agar plug contains a coloured indicator that changes from green to yellow when CO₂ is released during microorganism growth. CO₂ release is regularly measured and then interpreted by the Soleris software that allows growth to be directly expressed as a curve, and gives a positive result as soon as the detection threshold (DT) is reached. The method aims to detect contamination by one cell (1 CFU) in a milk bottle.

PROCEDURE

This study was performed by the Microbiology Laboratory of Actalia Cecalait in Poligny, France, from October 2014 to April 2015 and was conducted in 2 steps:

- Establishing the method's limit of detection
- Inclusivity study

Tests were performed on semi-skimmed UHT milk, in 1 litre bottles. Milk pre-incubation was conducted in a water bath set at 30 +/- 1 °C.

1. Methods

- <u>Soleris method</u>: after pre-incubation of the milk for 2 and 3 days at 30 °C, 5 mL are sampled in sterile fashion, and inoculated into a vial of "NF UHT medium". The vial is placed in the Soleris instrument, set at 30 +/- 1 °C, for a maximum of 48 hours.
- Resazurin test: after pre-incubation of the milk for 5 days at 30 °C, 2.5 mL of milk are added to 0.5 mL of resazurin at 0.005%. Readings are performed after 4 hrs 30 mins at 30 °C. In the event of a positive result, the blue or blue-purple colouration turns pink to white.
- Official method: 0.1 mL of milk pre-incubated for 15 days at 30 °C is inoculated into 2 PCA [Plate Count Agar] plates incubated for 3 days at 30 +/- 1 °C. A result below 10 CFU per 0.1 mL (< 100 CFU/mL) is considered negative. Within the context of this study, tests were also performed after 3 and 5 days of milk pre-incubation.

2. Determination of the limit of detection (LOD)

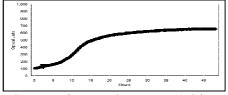
5 strains commonly found in UHT milk with different growth periods were tested. The 2014 protocol ISO/ FDIS 16140 was followed for this study:

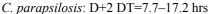
- 5 negative samples
- 20 samples with contamination of 0.5 CFU/litre
- 10 samples with contamination of approximately 5 CFU/litre

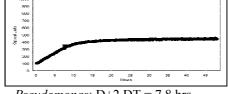
When it was possible, the limit of detection (LOD $_{50\%}$) was calculated: it is the lower number of cultivable microorganisms detectable in the sample with a probability of 50 %.

3. Inclusivity

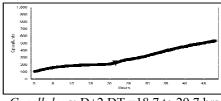
The 2014 protocol ISO/FDIS 16140 was followed for this study:


A panel of 32 representative microorganism strains that can contaminate UHT milk (including the 5 strains tested as part of the LOD step), from which the majority of strains specific to UHT milk or raw milk, were inoculated into milk at an approximate level of 10 CFU/mL.

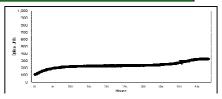

The official method was only used in the event of negative results for the other methods, or as additional verification.


RESULTS

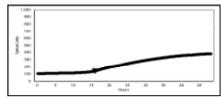
1. Determination of the limit of detection


	STRAIN		Candida parapsilosis Pseudomonas Cellulosimicrob cellulans							
C	FU/litre D0	0	0.27	2.7	0	0.39	3.9	0	0.79	7.9
Numbe	r of bottles (1 L)	5	20	5	5	20	5	5	20	5
Number	SOLERIS D+2	0	3	4	0	8	5	0	11	5
of	D+3	0	3	4	0	8	5	0	11	5
positive	RESA D+5	0	3	4	0	8	5	0	11	5
results	PCA D+15	0	3	4	0	8	5	0	11	5
SOLERIS LOD _{50%}		1.2 [0.5 – 2.6]		0.5 [0.2 – 1.0]			0.7 [0.3 – 1.3]			

Pseudomonas: D+2 DT = 7.8 hrs



C. cellulans: D+2 DT =18.7 to 29.7 hrs


For these 3 strains, the detection threshold for the Soleris method is around 1 CFU/L of UHT milk, with LOD_{50%} values ranging from 0.7 to 1.2 CFU/L, starting at 2 days of milk pre-incubation. These results are perfectly in line with the resazurin test and the official method.

ARTICLE

S	STRAIN			cteriun	Spores of Bacillus sporothermodurans					
CF	CFU/litre D0			0 1.1 9.2 92 920				0 1.3 13		
Number	Number of bottles (1 L)			5	3	3	5	20	5	
Number	SOLERIS D+2	0	0	0	0	3	0	0	0	
of	D+3	0	0	0	3	3	0	0	0	
positive	RESA D+5	0	0	0	0	0	0	0	0	
results	PCA D+15	0	9	5	3	3	0	0	0	
SOLERIS			280	[80 - 9]	-					
	27 [7 – 98]						-			

M. vaccae: D+2 DT= 40.0 - 44.9 hrs

B. sporothermodurans : 4 10⁵ CFU/ vial, DT = 16 hrs

- For *Mycobacterium vaccae*, the LOD_{50%} of the Soleris method is approximately 300 CFU/litre after a 2 days pre-incubation of UHT milk and 30 CFU/litre after a 3 days pre-incubation (also detectable in PCA). Resazurin gives negative results after 5 days incubation of the milk, even at high levels of around 1000 CFU/litre. At very low levels, after 5 days incubation of the milk, the colonies are detectable (about 20 to 50 colonies for 0.1 mL).
- *B. sporothermodurans* was not detected by any method at low levels. The same strain was tested using the MPN [Most Probable Number] technique (3 bottles/ dilution), with and without thermisation, at levels ranging from 1 to 5000 CFU/L, giving negative results in the Soleris method and resazurin tests, while the highest levels were detectable in PCA. The Soleris method was positive when a massive inoculation was performed (4 10⁵ CFU/ vial), demonstrating that the method is capable of detecting this bacteria. These results show that *B. sporothermodurans* survives, but slowly develops in milk.

Inclusivity Testing

	STRAINS	LEVEL/ L	SOL	ERIS	RESA	PCA		
		LEVEL/ L	D+2	D+3	D+5	D+3	D+5	D+14
	Stenotrophomonas maltophilia	23	+	+	+			
BACILLI	Stenotrophomonas maltophilia	40	+	+	+			
GRAM -	Aeromonas hydrophila	4.6/34	-/+	+/+	+/+	/+	/+	/+
OXYDASE +	Pseudomonas	7.8	+	+	+	+	+	+
OAIDASE T	Pseudomonas putida	7.4	+	+	+			
	Pseudomonas aeruginosa	11	+	+	+			
BACILLI	Enterobacter cloacae	5.6	+	+	+			
GRAM -	Escherichia coli	11	+	+	+			
OXYDASE -	Acinetobacter rudis: CIP 110305T	4.1/11	_/+	-/+	_/+	_/+	-/+	-/+
	Staphylococcus aureus	9.6	+	+	+			
COCCI	Staphylococcus capitis	32	-	-	-	-	-	-
COCCI	Streptococcus faecalis	15	+	+	+			
	Lactococcus lactis	6.1	+	+	+			
	Lactobacillus paracasei	6.1	+	+	+			
	Cellulosimicrobium cellulans: CIP 81.28	16	+	+	+	+	+	+
BACILLI	Microbacterium lacticum: CIP 101097	16/15	-/-	-/-	+/+	+/+	+	+
GRAM + Microbacterium liquefaciens: CIP 102402T Mycobacterium mucogenicum		10/7	+/+	+/+	+/+	+/+	+	+
		10-100	-	-	-	-	+	+
	Mycobacterium vaccae: CIP 105934T	9.2	-	-	-	-	+	+
	Paenibacillus lactis: CIP 108827T	5.5/78	-/-	-/-	-/+	+/-	+/+	+/+
	Bacillus cereus	4.6	+	+	+			
	Bacillus licheniformis	5.5/4.9	_/+	-/+	-/-	-/-	-/+	+/+
BACILLI	Bacillus sporothermodurans	6.5	-	-	-	-	_	
GRAM +	Bacillus sporothermodurans	11	-	-	-	ı	-	-
SPORES	Bacillus sporothermodurans (spores)	26	-	-	-	-	-	_
	Bacillus subtilis (spores): ATCC 6633	10	+	+	+	+	+	+
	Bacillus stearothermophilus (spores): C953	10	-	-	-	-	-	-
	Clostridium perfringens (spores)	10	-	-	-	-	-	_
YEAST	Yeast	8.0/0.2	-/ -	+/+	+/+	/+	/+	/+
ILASI	Candida parapsilosis	5.5	+	+	+	+	+	+
MOULD	Geotrichum	15	-	+	-	+	+	+
MOULD	Penicillium candidum	20	-	-	-	-	-	-

In bold: strains tested for LOD / Variance between Soleris method and resazurin test / Soleris method positive at D+3 and negative at D+2

ARTICLE

Some negative strains were tested twice to confirm the results.

Out of 32 strains tested for inclusivity (of which 5 strains were tested for LOD) at levels of approximately 10 CFU/litre, the Soleris method allowed the detection of 21 strains, of which 3 strains (*Aeromonas hydrophila*, *Acinetobacter rudis* and *B. licheniformis*) indicated a negative result in the first trial, and a positive result in the second trial.

The Soleris results are aligned with the resazurin test, except for:

- 1 strain of mould (*Geotrichum*) and 1 bacterial strain (*B. licheniformis*), detected with the Soleris method and not with the resazurin method
- 2 bacterial strains (*Microbacterium lacticum* and *Paenibacillus lactis*), detected with the resazurin method and not with the Soleris method.

Detection with the Soleris method occurred after a 2 days incubation of milk at 30 °C, except for 3 strains: 1 yeast and 1 mould, detected in 3 days, and 1 bacterium (*Aeromonas hydrophila*), detected in 2 days for 1 test out of 2.

CONCLUSIONS

Conclusion and results of the study

The study for the limit of detection of 5 strains gave the following results:

- For 3 strains (*Candida*, *Pseudomonas* and *Cellulisomicrobium*) the Soleris method, after a 2 days preincubation at 30°C, detected approximately 1 CFU/litre of semi-skimmed UHT milk, in perfect concordance with the resazurin test and the official method.
- The *Mycobacterium vaccae* strain was detected in the Soleris method, starting from about 100 CFU/litre, while the resazurin test made no detection at 1000 CFU/litre.
- The strain of *B. sporothermodurans* in sporulated or vegetative form was only detected at very high levels, regardless of the method used, undoubtedly because of the slow growth of this bacterium in milk.

The inclusivity study reveals that 21 out of 32 strains were detected using the Soleris method after a 3 days pre-incubation period of UHT milk at 30 °C, and 19 strains after a 2 days pre-incubation period. Four discrepancies were observed versus the resazurin test: two in favour of the Soleris method and two in favour of the resazurin test.

Conclusion using the Soleris method

The Soleris method is an easy method to implement: 5 mL of UHT milk are inoculated into a ready-to-use broth. The optical reading and interpretation of the results are performed automatically (without visual assessment), as opposed to the resazurin test. The results obtained are plotted, and the growth curve allows additional information to be obtained for the interpretation of results.

It enables results equivalent to the resazurin test to be obtained after 2 or 3 days of UHT milk pre-incubation, versus 5 days for the resazurin test.

The Soleris method can be used for all types of UHT milk: white, flavoured or supplemented (not tested in this study) while the resazurin test cannot be used on coloured flavoured milks and certain types of supplemented milks.

Patricia ROLLIER

The SOLERIS method is marketed by NEOGEN Europe:

European Headquarters of Neogen Corporation

The Dairy School, Auchincruive, Ayr, KA6 5HU, Scotland, UK

tel: +44 (0) 1292 525600 fax: +44 (0) 1292 525601 www.neogeneurope.com

STANDARDS, DRAFT STANDARDS

Classification in alphabetical order by theme

ISO standards under development

MICROBIOLOGY OF FO	OD
ISO/DIS 10272-1 February 2015	MICROBIOLOGY OF FOOD AND ANIMAL FEED Horizontal method for detection and enumeration of <i>Campylobacter</i> – Part 1: Detection method
ISO/DIS 10272-2 February 2015	MICROBIOLOGY OF FOOD AND ANIMAL FEED Horizontal method for detection and enumeration of <i>Campylobacter</i> – Part 2: Colony count technique
ISO/DIS 22964 February 2015	MICROBIOLOGY OF THE FOOD CHAIN Horizontal method for the detection of <i>Cronobacter</i> spp.
SENSORY ANALYSIS	
ISO 5495/DAmd 1 February 2015	SENSORY ANALYSIS Methodology - Paired comparison test – Amendment 1
STATISTICS	
ISO/DIS 16355-1 May 2015	Application of statistical and related methods to New technology and Product Development Process. Part 1: General Principle and Perspective of QFD Method

ISO published standards

REFERENCE MATERIAL	S
ISO GUIDE 30	REFERENCE MATERIALS
February 2015	Selected terms and definitions
ISO GUIDE 33	REFERENCE MATERIALS
February 2015	Good practice in using reference materials
SENSORY ANALYSIS	
ISO 11056/Amd 2	SENSORY ANALYSIS
March 2015	Methodology - Magnitude estimation method - Amendment 2
ISO 29842/Amd 1	SENSORY ANALYSIS
March 2015	Methodology - Balanced incomplete block designs - Amendment 1

NEW EU REGULATIONS

Classification is established in alphabetical order of the first keyword

CONTAMINANTS

O.J.E.U. L 111, 30th April 2015 – Commission recommendation (EU) 2015/682 of 29 April 2015 on the monitoring of the presence of perchlorate in food

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.111.01.0032.01.ENG

FATTY ACIDS

O.J.E.U. L 113, 1st **May 2015** – Commission Regulation (EU) 2015/705 of 30 April 2015 laying down methods of sampling and performance criteria for the methods of analysis for the official control of the levels of erucic acid in foodstuffs and repealing Commission Directive 80/891/EEC

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.113.01.0029.01.ENG

FAVOURING SUBSTANCES

O.J.E.U. L 107, 25th April 2015 – Commission Regulation (EU) 2015/648 of 24 April 2015 amending Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council as regards removal from the Union list of the flavouring substance of N-Ethyl (2E,6Z)-nonadienamide

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.107.01.0015.01.ENG

FOOD ADDITIVES

O.J.E.U. L 107, 25th April 2015 - Commission Regulation (EU) 2015/647 of 24 April 2015 amending and correcting Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of certain food additives

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.107.01.0001.01.ENG

O.J.E.U. L 93, 9th April 2015 – Commission Implementing Decision (EU) 2015/568 of 7 April 2015 amending Annex I to Implementing Decision 2012/725/EU as regards the definition of bovine lactoferrin

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.093.01.0071.01.ENG

O.J.E.U. L 65, 10th March 2015 – Commission Regulation (EU) 2015/391 of 9 March 2015 refusing to authorise certain health claims made on foods and referring to children's development and health

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.L .2015.065.01.0015.01.ENG

O.J.E.U. L 67, 12th March 2015 – Commission Regulation (EU) 2015/402 of 11 March 2015 refusing to authorise certain health claims made on foods, other than those referring to the reduction of disease risk and to children's development and health

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.067.01.0001.01.ENG

O.J.E.U. L 37, 13rd February 2015 – Commission Implementing Decision (EU) 2015/225 of 11 February 2015 amending Annexes I and II to Decision 2009/861/EC on transitional measures under Regulation (EC) No 853/2004 of the European Parliament and of the Council as regard the processing of non-compliant raw milk in certain milk processing establishments in Bulgarie

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.037.01.0015.01.ENG

P.D.O. / P.G.I.

O.J.E.U. C 55, 14th February 2015 – Publication of an application pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Obazda / Obatzter (PGI) (cheese product)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2015.055.01.0015.01.ENG

O.J.E.U. L 39, 14th February 2015 – Corrigendum to Commission Implementing Regulation (EU) No 668/0014 of 13 June 2014 laying down rules for the application of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.039.01.0023.01.ENG

O.J.E.U. L 43, 18th February 2015 – Commission Implementing Regulation (EU) 2015/256 of 13 February 2015 approving non-minor amendments to the specification for a name entered in the register of protected designations of origin and protected geographical indications [Comté (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.043.01.0009.01.ENG

O.J.E.U. C 62, 20th February 2015 – Publication pursuant to Article 8(1) of Commission Delegated Regulation (EU) No 664/2014 of the single document on a designation of origin or a geographical indication registered under Commission Regulation (EC) No 1107/96 in accordance with Article 17 of Council Regulation (EEC) No 2081/92 http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.C .2015.062.01.0007.01.ENG

O.J.E.U. L 47, 20th February 2015 – Commission Implementing Regulation (EU) 2015/271 of 17 February 2015 entering a name in the register of protected designations of origin and protected geographical indications [Pecorino delle Balze Volterrabe (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.L .2015.047.01.0009.01.ENG

O.J.E.U. L 53, 25th February 2015 – Commission Implementing Regulation (EU) 2015/293 of 24 February 2015 entering a name in the register of protected designations of origin and protected geographical indications [Liliputas (PGI) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.053.01.0005.01.ENG

O.J.E.U. L 55, 26th February 2015 – Commission Implementing Regulation (EU) 2015/301 of 13 February 2015 entering a name in the register of protected designations of origin and protected geographical indications [Weißlacker / Allgäuer Weißlacker (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.L .2015.055.01.0001.01.ENG

O.J.E.U. C 70, 27th February 2015 – Publication of an amendment application pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Idiazabal (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2015.070.01.0010.01.ENG

O.J.E.U. C 74, 3rd March 2015 - Publication of an amendment application pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Abondance (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2015.074.01.0011.01.ENG

O.J.E.U. L 97, 14th April 2015 – Commission Implementing Regulation (EU) 2015/581 of 26 March 2015 entering a name in the register of protected designations of origin and protected geographical indications [Traditional Avrshire Dunlop (PGI) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.097.01.0003.01.ENG

O.J.E.U. L 99, 16th April 2015 – Commission Implementing Regulation (EU) 2015/593 of 14 April 2015 approving non-minor amendments to the specification for a name entered in the register of protected designations of origin and protected geographical indications [Reblochon / Reblochon de Savoie (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.099.01.0005.01.ENG

O.J.E.U. L 103, 22nd April 2015 – Commission Implementing Regulation (EU) 2015/625 of 20 April 2015 approving non-minor amendments to the specification for a name entered in the register of protected designations of origin and protected geographical indications [Queso Zamorano (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.103.01.0005.01.ENG

O.J.E.U. C 142, 29th April 2015 – Publication of an application pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Silter (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.C .2015.142.01.0029.01.ENG

O.J.E.U. C 145, 1st May 2015 – Publication of an amendment application pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Rocamadour (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2015.145.01.0015.01.ENG

O.J.E.U. L 119, 12th May 2015 – Commission Implementing Regulation (EU) 2015/745 of 4 May 2015 entering a name in the register of protected designations of origin and protected geographical indications [Hollandse geitenkaas (PGI) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.L .2015.119.01.0001.01.ENG

O.J.E.U. C 156, 12th May 2015 – Publication of an amendment application pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Laguiole (PDO) (cheese)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2015.156.01.0010.01.ENG

PESTICIDES

O.J.E.U. L 71, 14th March 2015 – Commission Regulation (EU) 2015/399 of 25 February 2015 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 1,4-dimethylnaphthalene, benfuracarb, carbofuran, ethephon, fenamidone, fenvalerate, fenhexamid, furathiocarb, imazapyr, malathion, picoxystrobin, spirotetramat, tepraloxydim and trifloxystrobin in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv;OJ.L .2015.071.01.0001.01.ENG

O.J.E.U. L 71, 14th March 2015 – Commission Regulation (EU) 2015/400 of 25 February 2015 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for bone oil, carbon monoxide, cyprodinil, dodemorph, iprodione, metaldehyde, metazachlor, paraffin oil (CAS 64742-54-7), petroleum oils (CAS 92062-35-6) and propargite in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.071.01.0056.01.ENG

O.J.E.U. L 71, 14th March 2015 – Commission Regulation (EU) 2015/401 of 25 February 2015 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acetamiprid, chromafenozide, cyazofamid, dicamba, difenoco-nazole, fenpyrazamine, fluazinam, formetanate, nicotine, penconazole, pymetrozine, pyraclostrobin, tau-fluvalinate and tebuconazole in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.071.01.0114.01.ENG

O.J.E.U. L **92,** 8th **April 2015** – Commission Regulation (EU) 2015/552 of 7 April 2015 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 1,3-dichloropropene, bifenox, dimethenamid-P, prohexadione, tolylfluanid and trifluralin in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.092.01.0020.01.ENG

O.J.E.U. L **94, 10th April 2015** – Corrigendum to Commission Regulation (EU) 2015/552 of 7 April 2015 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 1,3-dichloropropene, bifenox, dimethenamid-P, prohexadione, tolylfluanid and trifluralin in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.094.01.0008.01.ENG

O.J.E.U. L 99, 16th April 2015 – Commission Implementing Regulation (EU) 2015/595 of 15 April 2015 concerning a coordinated multiannual control programme of the Union for 2016, 2017 and 2018 to ensure compliance with maximum residus levels of pesticides and to assess the consumer exposure to pesticide residues in and on food of plant and animal origin

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L_2015.099.01.0007.01.ENG

O.J.E.U. L 100, 17th April 2015 – Commission Regulation (EU) 2015/603 of 13 April 2015 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 2-naphthyloxyacetic acid, acetochlor, chloropicrin, diflufenican, flurprimidol, flutolanil and spinosad in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.100.01.0010.01.ENG

PHARMACOLOGICALLY ACTIVE SUBSTANCES

O.J.E.U. L **74, 18th March 2015** – Commission Implementing Regulation (EU) 2015/446 of 17 March 2015 amending Regulation (EU) N) 37/2010 as regards the substance "barium selenate"

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2015.074.01.0018.01.ENG

AFNOR VALIDATIONS

During its March meeting, the Technical Committee of NF VALIDATION approved by vote:

Commercial name	Date	Certificate	Description					
NEW VALIDATION								
BACGENE SALMONELLA SPP	Validation date: 26 Mar 2015 End of validity: 26 Mar 2015	EGS-38/01-03/15	Detection of Salmonella All human food products					
	RENEWALS	OF VALIDATIONS	S					
OXOID <i>LISTERIA</i> RAPID TEST	Validation date: 11 Apr 1995 Renewal: 11 Apr 1999, 24 Jun 2003, 3 Jul 2007, 24 Mar 2011 & 26 Mar 2015 End of validity: 11 Apr 2019	UNI-03/02-04/95	Detection of <i>Listeria</i> spp All human food products and environmental samples					
GELOSE CHROMID LMONO (LMO & LMO-F)	Validation date: 13 May 2011 Renewal: 26 Mar 2015 End of validity: 13 May 2019	BIO-12/31-05/11	Detection of <i>Listeria monocytogenes</i> All human food products and samples of production environment					

The validation certificates and the recapitulative list are available at the following website address: http://www.afnor-validation.com/afnor-validation-validated-methods/validated-methods.html

BOOKSHOP - FORTHCOMING EVENTS - IN THE PRESS-ON THE WEB

FORTHCOMING EVENTS

Classified in chronological order

MILK AND DAIRY PRODUCTS

20-24 September 2015 Vilnius, Lithuania

IDF World Dairy Summit - 2015

http://idfwds2015.com

IN THE PRESS - ON THE WEB

Classification in alphabetical order of keywords

FOOD ADDITIVES

Report of the forty seventh session of the Codex Committee on food additives

http://www.codexalimentarius.org/download/report/924/REP15 FAe.pdf

▶ This report presents the 47th session of the Codex Committee on food additives held from 23-27 March 2015 in Xi'an, China. The conclusions will be submit for adoption / examination by the 38th session of the Codex Alimentarius on 6-11 July 2015 in Geneva, Switzerland.

METAL

Scientific opinion of the risks to public health related to the presence of nickel in food and drinking water

http://www.efsa.europa.eu/en/efsajournal/pub/4002.htm

▶ In March 2012, the European Food Safety Authority (EFSA) reveived a request from the Hellenic Food Authority (EFET) for a scientific opinion on the risk to human health of nickel (Ni) in food. Overall, the CONTAM panel concluded that, at the current levels of exposure, there is a concern that Ni-sensitized-individuals may develop flare-up skin reactions. It noted also the need for complementary studies to evaluate the effects on the human reproduction and development.

METHODS OF ANALYSIS

Report of the thirty-sixth session of the Codex Committee on methods of analysis and sampling http://www.codexalimentarius.org/download/report/921/REP15 MASe.pdf

▶ This report presents the 36th session of the Codex Committee on methods of analysis and sampling held from 23-27 February 2015 in Budapest, Hungary. The conclusions will be submit for adoption / examination by the 38th session of the Codex Alimentarius on 6-11 July 2015 in Geneva, Switzerland.

PROTEINS

Scientific opinion on dietary reference values for protein

http://www.efsa.europa.eu/en/efsajournal/pub/2557.htm

▶ This scientific opinion, which deals with the setting of dietary reference values for protein, replaces the earlier version published on 9 February 2015. Only minor editorial changes, which do not affect the content of this report, were made.

La Lettre de CECALAIT est éditée par ACTALIA Cecalait, B.P. 70129, 39801 POLIGNY CEDEX ACTALIA : association. Président : Patrick LEPELLEUX ; Directeur : Thierry PETIT

Directeur de la publication : Thierry PETIT Créatrice : Annette BAPTISTE Maquette : A. BAPTISTE, I. BECAR

Responsable de la rédaction : Carine TROUTET - E-mail : <u>c.troutet@actalia.eu</u>

A collaboré à ce numéro : P. ROLLIER

Relecture : Ph. TROSSAT, P. ROLLIER, F. MARTINEZ Rédaction achevée le 11 mai 2015 – Traduction achevée le 19 mai 2015

Impression: ACTALIA Cecalait, B.P. 70129, 39801 POLIGNY CEDEX

Tél.: 33.(0)3.84.73.63.20 - Fax: 33.(0)3.84.73.63.29

1^{er} trimestre 2015 Dépôt légal : à parution ISSN 1298-6976