

2nd quarter 2020, No. 112

Evaluation of the MIRA [®] infrared analyser	1-5
Standards, draft standards, New EU regulations	6-8
Afnor validations	9-10
In the press – On the web	11
Bibliographic references with table of contents, keywords	annexed

ACTALIA Cecalait

Rue de Versailles - B.P. 70129 39801 POLIGNY CEDEX FRANCE www.cecalait.fr www.actalia.eu

EVALUATION OF THE MIRA[®] INFRARED ANALYSER

The MIRA[®] is a spectrophotometer manufactured by Bruker. It is used for the determination of the composition components (fat, dry matter, lactose and optionally freezing point) in liquid dairy products. The apparatus is computer controlled with the OPUS/LSM2 software, which ensures the signal treatment. Cleaning and zero measurements are completely automated. The spectrophotometer uses a DLaTGS detector type. Several filters can be used for the determination of a product. They present correction factors unequal to zero.

The instrument used in this study was:

- Type of instrument: MIRA[®]
- Internal Bruker part number: 1804289
- Instrument serial number: 100036
- Software version: OPUS 8.2.21

The instrument was installed in a temperature controlled room (20-23 °C – air conditioning), without direct sunlight. The installation procedure was performed by Bruker.

Cleaning solution (Decon solution at 4 %) and zero solution (Triton X100 solution at 0.1%) are standard solutions delivered with the instrument and required for the usage.

THE TESTS

The evaluation tests were performed in ACTALIA Cecalait's physico-chemistry laboratory from September 2019 to February 2020. After preliminary tests of stability, the repeatability and accuracy on cow raw milk, cream, skimmed and semi-skimmed milk for fat, true protein and dry matter were evaluated.

The accuracy of the instrument was evaluated according to the following standards:

- Fat content in milk:	Gerber method according to ISO 19662 IDF 238 (2018)
 Fat content in skimmed milk: 	Röse-Gottlieb method according to ISO 1211 IDF 1 (2010)
- Fat content in cream:	Röse-Gottlieb method according to ISO 2450 IDF 16 (2008)
- True protein content in milk and skimmed milk:	Amido black method according to NF V04-216 (2011)
- Dry matter content in milk, skimmed milk and cream:	Oven method according to ISO 6731 IDF 21 (2011).

1. EVALUATION OF SHORT-TERM REPRODUCTIBILITY

The short term reproducibility was evaluated by analysing 3 samples of milk, with different levels of fat and protein content, in triplicate, every 15 minutes to obtain at least 20 sequences.

To evaluate the stability of the instrument, the repeatability and reproducibility were calculated by level.

	Level 1	Level 2	Level 3
Fat (g/100 g)	2.2	3.7	5.1
Protein (g/100 g)	2.3	3.1	3.9

Table 1: Content of the samples used for the short term reproducibility evaluation

_		М	Sr	Sr(%)	SR	SR(%)	r	R
F et	Level 1	2.159	0.0081	0.374%	0.0229	1.060%	0.022	0.063
Fat (g/100 g)	Level 2	3.671	0.0066	0.179%	0.0204	0.555%	0.018	0.056
(9/100 9)	Level 3	5.135	0.0085	0.166%	0.0174	0.339%	0.024	0.048
	Level 1	2.341	0.0087	0.372%	0.0252	1.078%	0.024	0.070
True protein (g/100 g)	Level 2	3.143	0.0073	0.234%	0.0218	0.696%	0.020	0.060
(9/100 9)	Level 3	3.928	0.0069	0.176%	0.0196	0.499%	0.019	0.054
Draw and other	Level 1	10.294	0.0199	0.193%	0.0494	0.480%	0.055	0.137
Dry matter (g/100 g)	Level 2	12.258	0.0190	0.155%	0.0447	0.365%	0.053	0.124
(9,100 9)	Level 3	14.187	0.0187	0.132%	0.0336	0.271%	0.052	0.107

The following table presents the results obtained:

Table 2: MIRA[®] stability criteria for fat, true protein and dry matter content¹

The results indicate that the standard deviations of repeatability for fat and protein are below the limits (0.028 g/100 g) required in ISO 8196-3 IDF 128-3 standard.

As no standardised value exists for dry matter, it can also be noted that the reproducibility of the instrument is lower than the reproducibility of the reference method (0.20 g/100 g).

2. EVALUATION OF THE REPEATABILITY

The repeatability of the instrument was performed by analysing:

- for trucks raw milk: 44 samples of trucks raw milk from a French plant (West of France).
- for cream: 34 samples of cream from a French plant (West of France).

• <u>for skimmed and semi-skimmed milk</u>: 20 samples of skimmed and semi-skimmed milk. Final samples have been reconstituted from skimmed and whole milk samples in order to obtain fat ranging from around 0.05 to 1.6 g of fat/100 g.

Bronopol was added to the samples to give a final concentration of 0.02 %. The quantitative analyses were performed in duplicate according to the following sequence: Set 1 rep 1 - Set2 rep $2 - \dots - \text{Set}$ n rep n.

The following table presents the results obtained:

		n	min	max	М	S _r	S _r %	r
	Fat (g/100 g)	44	3.98	4.44	4.20	0.006	0.14%	0.016
Trucks raw milk	True protein (g/100 g)	44	3.26	3.51	3.36	0.005	0.14%	0.013
	Dry matter (g/100 g)	44	12.70	13.24	12.95	0.008	0.06%	0.023
Cream	Fat (g/100g)	34	31.69	34.90	33.81	0.113	0.33%	0.313
	Dry matter (g/100 g)	34	44.10	48.65	47.11	0.150	0.32%	0.414
	Fat (g/100 g)	19	-0.10	2.27	1.07	0.009	0.83%	0.025
Skimmed and semi-skimmed milk	True protein (g/100 g)	19	3.33	3.48	3.42	0.009	0.25%	0.024
Seini-Skiinineu Innk	Dry matter (g/100 g)	19	9.08	11.27	10.19	0.018	0.17%	0.049

Table 3: MIRA[®] repeatability criteria for fat, true protein and dry matter in trucks raw milk, cream

and skimmed and semi-skimmed milk²

It can be noted that:

• <u>for trucks raw milk</u>: for fat and true protein content, the standard deviations of repeatability are in accordance with the recommendations of the ISO 8196-3 | IDF 128-3 standard (Sr < 0.014 g/100 g).

For dry matter, the absolute standard deviation of repeatability (Sr) of the instrument is in the same order that the results for the other components and significantly lower than the repeatability standard deviation of the reference method (Sr = 0.036 g/100g).

• <u>for cream</u>: For fat the relative standard deviation of repeatability is in accordance with the recommendations of the ISO 8196-3 | IDF 128-3 standard (Sr% < 0.35 %).

For dry matter, the relative repeatability (Sr %) of the instrument is equivalent to results obtained for fat and the absolute standard deviation is higher to the limit of the reference method (Sr = 0.072 g/100 g).

¹ M: mean; Sr and SR (Sr% and SR%): absolute (and relative) standard deviation of repeatability and reproducibility; r and R: maximum deviation of repeatability and reproducibility in 95 % of cases.

² n: number of results; min and max: minimum and maximum values; M: mean of the results; Sr (Sr%): absolute (and relative) standard deviation of repeatability; r: maximum deviation of repeatability in 95 % of cases.

ARTICLE

• <u>for skimmed and semi-skimmed milk</u>: for fat and true protein, the standard deviations of repeatability are in accordance with the recommendations of the ISO 8196-3 | IDF 128-3 standard (Sr < 0.014 g/100 g). For dry matter, the absolute standard deviation of repeatability (Sr) of the instrument is significantly lower than the limit of the reference method (Sr = 0.036 g/100 g).

3. EVALUATION OF THE ACCURACY

The accuracy of the instrument was evaluated by using the mean of the instrument results from the repeatability test. Outliers samples (samples whose regression residues are greater than 2 times the type of deviation: P at 5 %) have been discarded.

The following table presents the results obtained:

		n	min	max	Y	Sy	d	Sd	Sy,x	Sy,x%
	Fat (g/100g)	41	3.98	4.43	4.14	0.09	0.068	0.028	0.022	0.52%
Trucks raw milk	True protein (g/100g)	40	3.26	3.51	3.21	0.05	0.15	0.018	0.017	0.53%
	Dry matter (g/100g)	42	12.71	13.24	13.03	0.05	-0.08	0.049	0.046	0.35%
0	Fat (g/100g)	30	31.78	34.82	41.97	0.93	-8.16	0.190	0.194	0.46%
Cream	True protein (g/100g)	33	44.22	48.59	47.40	1.01	-0.21	0.216	0.219	0.46%
Skimmed	Fat (g/100g)	19	-0.10	2.26	0.84	0.53	0.229	0.024	0.025	2.99%
and semi- skimmed	True protein (g/100g)	18	3.34	3.47	3.42	0.03	-0.003	0.013	0.014	0.40%
milk	Dry matter (g/100g)	18	9.09	11.27	10.13	0.45	0.105	0.060	0.062	0.61%

<u>Table 4</u> MIRA[®] accuracy criteria for fat, true protein and dry matter in trucks raw milk, cream and skimmed and semi-skimmed milk³

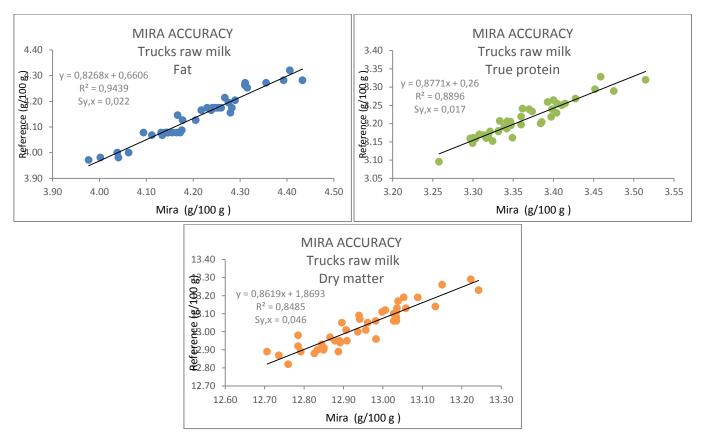


Figure 1: Relation between MIRA® and reference results for fat, true protein and dry matter in trucks raw milk

³ n, min, max: number of results, minimum and maximum values; Y: mean results using the reference method; Sy: standard deviation of the results from the reference method; d, Sd: mean and standard deviations of deviations; Sy,x (Sy,x%): absolute (and relative) residual standard deviation.

ARTICLE

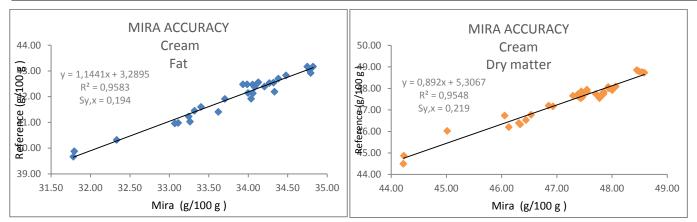


Figure 2: Relation between MIRA® and reference results for fat and dry matter in cream

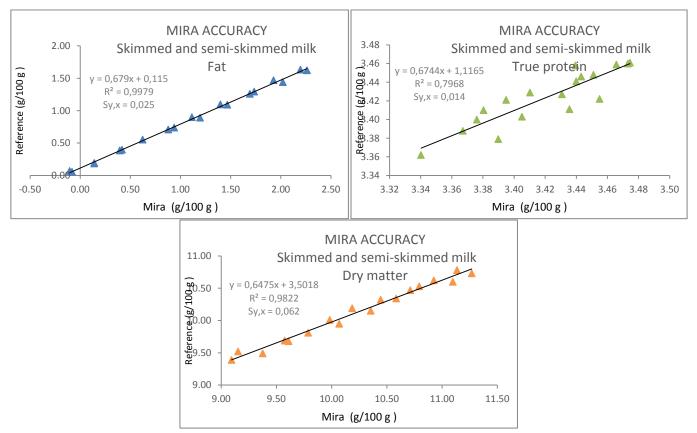


Figure 3: Relation between MIRA[®] and reference results for fat, true protein and dry matter in skimmed and semi-skimmed milk

Concerning the relation between MIRA® and reference results, it can be noted that:

• for trucks raw milk:

The means and standard deviations of deviation are respectively equal to 0.068 and 0.028 g of fat/100 g, 0.154 and 0.018 g of protein/100 g, and -0.082 and 0.046 g of dry matter/100 g.

The regression slopes (fat: 0.827; protein: 0.877; dry matter: 0.862) are significantly different from 1.00. The intercepts for fat (0.661), protein (0.260) and dry matter (1.869) are significantly different from 0.00. These results can be explained by the milks used for this evaluation, which may have a fine composition different from those used to calibrate the instrument as well as the range of contents of the tested samples, which is not very wide.

The residual standard deviations of linear regression are equal to 0.022 g of fat/100 g, 0.017 g of protein/100 g, and 0.046 g of dry matter/100 g.

for cream:

The means and standard deviations of deviation are respectively equal to -8.16 and 0.190 g of fat/100 g, and -0.21 and 0.216 g of dry matter/100 g.

The regression slopes (fat: 1.144; dry matter: 0.892) and the intercepts (fat: 3.289; dry matter: 5.307) are significantly different from 1.00 and 0.00 (P = 5 %). These results can be explained by the creams used for this evaluation, which may have a fine composition different from those used to make the model as well as the range of fat contents of the samples tested which is not very wide.

The residual standard deviations of linear regression are equal to 0.19 g of fat/100 g and 0.22 g of dry matter/100 g.

ARTICLE

• for skimmed and semi-skimmed milk:

The means and standard deviations of deviation are respectively equal to 0.229 and 0.024 g of fat/100 g, -0.003 and 0.013 g of protein/100 g, and 0.105 and 0.060 g of dry matter/100 g.

The regression slopes (fat: 0.679; protein: 0.674; dry matter: 0.647) and the intercepts (fat: 0.115; protein: 1.117; dry matter: 3.502) are significantly different from 1.00 and 0.00 (P = 5 %). These results can be explained by the milks used for this evaluation, which may have a fine composition different from the milks used to make the model, as well as the range of fat contents of the samples tested which is not very wide.

The residual standard deviations of linear regression are equal to 0.025 g of fat/100 g, 0.014 g of protein/100 g, and 0.062 g of dry matter/100 g.

4. CONCLUSION

We can conclude that the stability of the instrument is in accordance with the requirements of the ISO 8196-3 standard.

Concerning the repeatability of the instrument, the results for fat and true protein in milk are in conformity with the requirements of the ISO 9622 standard.

The performance of the instrument for the fat determination on cream is in accordance with the relative standard deviation (0,35 %) prescribed in the ISO 9622 standard.

As no standardised value exists for dry matter content, the reproducibility values of the instrument have been compared to the reproducibility values of the reference methods.

Concerning the accuracy of the instrument, no standardised requirements exist for these types of dairy products (trucks raw milk, cream and skimmed milk).

According to the evaluation report of the MIRA[®] analyser - A. OUDOTTE and Ph. TROSSAT – September 2019 – February 2020

STANDARDS, DRAFT STANDARDS

Classification in alphabetical order by theme

ISO standards under development

MICROBIOLOGY OF THE F	MICROBIOLOGY OF THE FOOD CHAIN						
ISO/DIS 6888-1 May 2020	MICROBIOLOGY OF THE FOOD CHAIN Horizontal method for the enumeration of coagulase-positive staphylococci (<i>Staphylococcus aureus</i> and other species) — Part 1: Technique using Baird- Parker agar medium						
ISO/DIS 6888-2 May 2020	MICROBIOLOGY OF THE FOOD CHAIN Horizontal method for the enumeration of coagulase-positive staphylococci (<i>Staphylococcus aureus</i> and other species) — Part 2: Technique using rabbit plasma fibrinogen agar medium						
QUALITE							
ISO/DIS 10013 Juillet 2020	QUALITY MANAGEMENT SYSTEMS Guidance for documented information						
ISO/DIS 10017 Juillet 2020	QUALITY MANAGEMENT Guidance on statistical techniques for ISO 9001:2015						

ISO published standards

FORTIFIED MILK POWDER	S, INFANT FORMULA AND ADULT NUTRITIONALS
ISO 23305 April 2020	FORTIFIED MILK POWDERS, INFANT FORMULA AND ADULT NUTRITIONALS Determination of total biotin by liquid chromatography coupled with immunoaffinity column clean-up extraction
MICROBIOLOGY OF THE F	OOD CHAIN
ISO 6887-5 April 2020	MICROBIOLOGY OF THE FOOD CHAIN Preparation of test samples, initial suspension and decimal dilutions for microbiological examination – Part 5: Specific rules for the preparation of milk and milk products <i>Replace ISO 6887-5:2010</i>
ISO 7932/Amd1 Mach 2020	MICROBIOLOGY OF THE FOOD CHAIN Horizontal method for the enumeration of presumptive <i>Bacillus cereus</i> – Colony- count technique at 30 °C – Amendment 1: Inclusion od optional tests
ISO 11133/Amd2 May 2020	MICROBIOLOGY OF FOOD, ANIMAL FEED AND WATER Preparation, production, storage and performance testing of culture media – Amendment 2
QUALITY	
ISO/IEC 17000 May 2020	CONFORMITY ASSESSMENT Vocabulary and general principles <i>Replace ISO/IEC 17000:2004</i>
ISO 7870-3 May 2020 CONTROL CHARTS Part 3: Acceptance control charts <i>Replace ISO 7870-3:2012</i>	
SENSORY ANALYSIS	
ISO 11036 May 2020	SENSORY ANALYSIS Methodology – Texture profile <i>Replace ISO 11036:1994</i>

NEW EU REGULATIONS

Classification is established in alphabetical order of the first keyword

CONTAMINANTS

O.J.E.U. L 160, 25th May 2020 – Commission Regulation (EU) 2020/685 of 20 May 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of perchlorate in certain foods

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2020.160.01.0020.01.ENG

FOOD ADDITIVES

O.J.E.U. L 184, 12th June 2020 – Commission Regulation (EU) 2020/771 of 11 June 2020 amending Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council and the Annex to Commission Regulation (EU) No 231/2012 as regards the use of Annatto, Bixin, Norbixin (E 160b) http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.L_.2020.184.01.0025.01.ENG

P.D.O. / P.G.I.

O.J.E.U. C 166, 14th May 2020 – Publication of the amended single document following approval of a minor amendment in accordance with the second subparagraph of Article 53(2) of Regulation (EU) No 1151/2012 [Silter (cheese) (PDO)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2020.166.01.0020.01.ENG

O.J.E.U. C 170, 18th May 2020 – Publication of an application for approval of an amendment, which is not minor, to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Pecorino siciliano (cheese) (PDO)] http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C_.2020.170.01.0027.01.ENG

O.J.E.U. C 171, 19th May 2020 – Publication of an application for approval of an amendment, which is not minor, to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Casatella Trevigiana (cheese) (PDO)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C_.2020.171.01.0029.01.ENG

O.J.E.U. L 162, 26th May 2020 – Commission Implementing Regulation (EU) 2020/694 of 18 May 2020 approving non-minor amendments to the specification for a name entered in the register of protected designations of origin and protected geographical indications "Tomme des Pyrénées" (cheese) (PGI) <u>http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L_.2020.162.01.0004.01.ENG</u>

O.J.E.U. L 166, 28th May 2020 – Commission Implementing Regulation (EU) 2020/708 of 19 May 2020 entering a name in the register of protected designations of origin and protected geographical indications [Brousse du Rove (cheese) (PDO)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L_.2020.166.01.0001.01.ENG

O.J.E.U. C 178, 28th May 2020 – Publication of an application for approval of non-minor amendments to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Asiago (cheese) (PDO)] http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.C _2020.178.01.0008.01.ENG

O.J.E.U. C 180, 29th May 2020 – Publication of the amendment single document following the approval for a minor amendment pursuant to the second subparagraph of Article 53(2) of Regulation (EU) No 1151/2012 [Emmental de Savoie (cheese) (PGI)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C_.2020.180.01.0018.01.ENG

O.J.E.U. C 185, 5th June 2020 – Publication of an application for approval of an amendment, which is not minor, to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Raclette de Savoie (cheese) (PGI)] http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C

O.J.E.U. C 186, 5th June 2020 – Publication of an application for approval of an amendment, which is not minor, to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Queijo terrincho (cheese) (PDO)] http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2020.186.01.0008.01.ENG

O.J.E.U. C 186, 5th June 2020 – Publication of the amended single document following the approval of a minor amendment pursuant to the second subparagraph of Article 53(2) of Regulation (UE) No 1151/2012 [Tomme de Savoie (cheese) (PGI)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C .2020.186.01.0019.01.ENG

O.J.E.U. L 197, 22nd June 2020 – Commission Implementing Regulation (EU) 2020/861 of 16 June 2020 approving non-minor amendments to the specification for a name entered in the register of protected designations of origin and protected geographical indications [Cantal / Fourme de Cantal / Cantalet (cheese) (PDO)] http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L_.2020.197.01.0001.01.ENG **O.J.E.U. C 193, 9th June 2020** – Publication of an application for approval of an amendment, which is not minor, to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Pouligny-Saint-Pierre (cheese) (PDO)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C_.2020.193.01.0034.01.ENG

O.J.E.U. C 211, 25th June 2020 – Publication of an application for approval of an amendment, which is not minor, to a product specification pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs [Sainte-Maure de Touraine (cheese) (PDO)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.C_.2020.211.01.0015.01.ENG

O.J.E.U. L 209, 2nd July 2020 – Commission Implementing Regulation (EU) 2020/914 of 25 June 2020 approving non-minor amendments to the specification for a name entered in the register of protected designations of origin and protected geographical indications [Brie de Meaux (cheese) (PDO)]

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L .2020.209.01.0004.01.ENG

PESTICIDES

O.J.E.U. L 184, 12th June 2020 – Commission Regulation (EU) 2020/770 of 8 June 2020 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for myclobutanil, napropamide and sintofen in or on certain products http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=urisery:OJ.L .2020.184.01.0001.01.ENG

O.J.E.U. L 190, 16th June 2020 – Commission Regulation (EU) 2020/785 of 9 June 2020 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for chromafenozide, fluometuron, pencycuron, sedaxane, tau-fluvalinate and triazoxide in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L_.2020.190.01.0001.01.ENG

O.J.E.U. L 195, 19th June 2020 – Commission Regulation (EU) 2020/856 of 9 June 2020 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for cyantraniliprole, cyazofamid, cyprodinil, fenpyroximate, fludioxonil, fluxapyroxad, imazalil, isofetamid, kresoxim-methyl, lufenuron, mandipropamid, propamocarb, pyraclostrobin, pyriofenone, pyriproxyfen and spinetoram in or on certain products

http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=uriserv:OJ.L_.2020.195.01.0009.01.ENG

AFNOR VALIDATIONS

During its May meeting, the Technical Committee of NF VALIDATION approved by vote:

Commercial name	Date	Certificate	Description
		VALIDATION	Decempion
	Validation date:		
	End of validity:		
Test 3m™		S OF VALIDATIONS	
DETECTION	Validation date: 18 May 2016 Renewal: 30 Apr 2020	3M-01/14-05/16	Detection of <i>Listeria</i> spp.
MOLECULAIRE 2 - <i>LISTERIA</i>	End of validity: 18 May 2024		All human food products and production environmental samples
	Validation date: 1 Jul 2008		
	Extension: 26 Jan 2009,		Detection of <i>Listeria</i> spp. (except
BAX SYSTEM PCR ASSAY <i>LISTERIA</i> 24E	12 May 2011 and 3 Oct 2017	QUA-18/06-07/08	Listeria grayi)
(AUTOMATISED)	Renewal: 6 Jul 2012,	QUA-10/00-07/00	All human food products and production
	18 Mar 2016 and 30 Apr 2020 End of validity: 1 Jul 2024		environmental samples
ONE BROTH ONE	Validation date: 1 Jul 2016		Detection of <i>Listeria</i> spp.
PLATE FOR LISTERIA	Renewal: 30 Apr 2020 End of validity: 1 Jul 2024	NEO-35/05-07/16	All human food products and production environmental samples
	Validation date: 1 Jul 2008	QUA-18/05-07/08	
BAX SYSTEM PCR ASSAY <i>LISTERIA</i>	Extension: 26 Jan 2009, 12 May 2011 and 3 Oct 2017		Detection of Listeria monocytogenes
MONOCYTOGENES	Renewal: 6 Jul 2012,		All human food products and production
24E (AUTOMATISED)	18 Mar 2016 and 30 Apr 2020		environmental samples
	End of validity: 1 Jul 2024		
ONE BROTH ONE	Validation date: 1 Jul 2016		Detection of Listeria monocytogenes
PLATE FOR LISTERIA	Renewal: 30 Apr 2020	NEO-35/06-07/16	All human food products and production
	End of validity: 1 Jul 2024		environmental samples
			Detection of Salmonella from group A
	Validation date: 7 Oct 2011		(except Salmonella Paratyphi A) through group E
REVEAL 2.0 SALMONELLA	Renewal: 6 Jul 2015 and 30 Apr 2020	NEO-35/01-10/11	Meat products, dairy products (except
	End of validity: 7 Oct 2023		milk powders), egg products, seafood and vegetables (except dehydrated
			products)
	Validation date: 30 Jun 2016		
	Extension: 29 Sep 2016,		Detection of Salmonella spp.
GENE-UP	24 Mar 2017, 3 Jul 2017, 23 Nov 2017, 26 Jan 2018,		All human food products, pet food
SALMONELLA	4 Oct 2018, 3 Dec 2018	BIO-12/38-06/16	products and production environmental
	and 29 Nov 2019 Renewal:14 May 2020		samples (except primary production environment)
	End of validity: 30 Jun 2024		,

AFNOR VALIDATIONS

SIMPLE METHOD FOR SALMONELLA (SMS)	Validation date: 7 May 2004 Extension: 2 Jul 2007 Renewal: 27 Mar 2008, 22 Mar 2012 and 18.05.2016 End of validity: 7 May 2024	AES-10/04-05/04	Detection of motile Salmonella All human and animal food products, an production environmental sample (except primary production environment)		
	EXTENSIO	ON OF VALIDATION			
IDEXX SNAP β- LACTAM	Validation date: 3 Oct 2019 Extension : 14 May 2020 End of validity: 3 Oct 2023	IDX-33/07-10/19	Detection of antibiotics Raw cow's milk and raw commingled cow's milk		

The validation certificates and the recapitulative list are available at the following website address: <u>http://www.afnor-validation.com/afnor-validation-validated-methods/validated-methods.html</u>

IN THE PRESS – ON THE WEB

Classification in alphabetical order of keywords

FOOD ADDITIVES

Re-evaluation of sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) as food additives

https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2020.6152

► The Panel on Food Additives and Flavourings provided a scientific opinion re-evaluating the safety of Sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) as food additives, in particular in cheese. Considering that only very limited toxicological data and insufficient information on the physico-chemical characterisation of both food additives were available, the Panel concluded that the safety of sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) could not be assessed.

Opinion on the re-evaluation of ascorbyl palmitate (E 304i) as a food additive in foods for infants below 16 weeks of age and the follow-up of its re-evaluation as a food additive for uses in foods for all population groups

https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2020.6153

► The Panel on Food Additives and Flavourings was requested to assess the safety of ascorbyl palmitate (E 304(i)) for its uses as food additive in food for infants below 16 weeks of age. The Panel concluded that, at the maximum tolerance limits, ascorbyl palmitate used as a food additive in infant formula does not raise health concerns.

NOVEL FOOD

Safety of 3'-sialyllactose (3'-SL) sodium salt as novel food pursuant to Regulation (EU) 2015/2283

https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2020.6098

Safety of 6'-sialyllactose (6'-SL) sodium salt as novel food pursuant to Regulation (EU) 2015/2283

https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2020.6098

► The EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) has delivered opinions on 3'-sialyllactose (3'- SL) sodium salt and 6'-sialyllactose sodium salt (6'-SL), as new foods The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The Panel concludes that 3'-sialyllactose sodium salt (3'-SL) and 6'-sialyllactose sodium salt (6'-SL) are safe under the proposed conditions of use for the proposed target populations.

La Lettre de CECALAIT est éditée par ACTALIA Cecalait, B.P. 70129, 39801 POLIGNY CEDEX ACTALIA : association. Président : Eric LESAGE ; Directeur : Thierry PETIT Directeur de la publication : Thierry PETIT Responsable de la rédaction : Carine TROUTET - E-mail : <u>c.troutet@actalia.eu</u> Publication le 6 juillet 2020 - Publication trimestrielle Impression : ACTALIA Cecalait, B.P. 70129, 39801 POLIGNY CEDEX Tél. : 33.(0)3.84.73.63.20 - Fax : 33.(0)3.84.73.63.29 Dépôt légal : à parution ISSN : 1298-6976 Prix : 10,07 € HT